| Andrew Cooke | Contents | Latest | RSS | Twitter | Previous | Next

C[omp]ute

Welcome to my blog, which was once a mailing list of the same name and is still generated by mail. Please reply via the "comment" links.

Always interested in offers/projects/new ideas. Eclectic experience in fields like: numerical computing; Python web; Java enterprise; functional languages; GPGPU; SQL databases; etc. Based in Santiago, Chile; telecommute worldwide. CV; email.

Personal Projects

Lepl parser for Python.

Colorless Green.

Photography around Santiago.

SVG experiment.

Professional Portfolio

Calibration of seismometers.

Data access via web services.

Cache rewrite.

Extending OpenSSH.

Last 100 entries

Poorest in UK, Poorest in N Europe; I Want To Be A Redneck!; Reverse Racism; The Lost Art Of Nomography; IBM Data Center (Photo); Interesting Account Of Gamma Hack; The Most Interesting Audiophile In The World; How did the first world war actually end?; Ky - Restaurant Santiago; The Black Dork Lives!; The UN Requires Unaninmous Decisions; LPIR - Steganography in Practice; How I Am 6; Clear Explanation of Verizon / Level 3 / Netflix; Teenage Girls; Formalising NSA Attacks; Switching Brakes (Tektro Hydraulic); Naim NAP 100 (Power Amp); AKG 550 First Impressions; Facebook manipulates emotions (no really); Map Reduce "No Longer Used" At Google; Removing RAID metadata; New Bike (Good Bike Shop, Santiago Chile); Removing APE Tags in Linux; Compiling Python 3.0 With GCC 4.8; Maven is Amazing; Generating Docs from a GitHub Wiki; Modular Shelves; Bash Best Practices; Good Emergency Gasfiter (Santiago, Chile); Readings in Recent Architecture; Roger Casement; Integrated Information Theory (Or Not); Possibly undefined macro AC_ENABLE_SHARED; Update on Charges; Sunburst Visualisation; Spectral Embeddings (Distances -> Coordinates); Introduction to Causality; Filtering To Help Colour-Blindness; ASUS 1015E-DS02 Too; Ready Player One; Writing Clear, Fast Julia Code; List of LatAm Novels; Running (for women); Building a Jenkins Plugin and a Jar (for Command Line use); Headphone Test Recordings; Causal Consistency; The Quest for Randomness; Chat Wars; Real-life Financial Co Without ACID Database...; Flexible Muscle-Based Locomotion for Bipedal Creatures; SQL Performance Explained; The Little Manual of API Design; Multiple Word Sizes; CRC - Next Steps; FizzBuzz; Update on CRCs; Decent Links / Discussion Community; Automated Reasoning About LLVM Optimizations and Undefined Behavior; A Painless Guide To CRC Error Detection Algorithms; Tests in Julia; Dave Eggers: what's so funny about peace, love and Starship?; Cello - High Level C Programming; autoreconf needs tar; Will Self Goes To Heathrow; Top 5 BioInformatics Papers; Vasovagal Response; Good Food in Vina; Chilean Drug Criminals Use Subsitution Cipher; Adrenaline; Stiglitz on the Impact of Technology; Why Not; How I Am 5; Lenovo X240 OpenSuse 13.1; NSA and GCHQ - Psychological Trolls; Finite Fields in Julia (Defining Your Own Number Type); Julian Assange; Starting Qemu on OpenSuse; Noisy GAs/TMs; Venezuela; Reinstalling GRUB with EFI; Instructions For Disabling KDE Indexing; Evolving Speakers; Changing Salt Size in Simple Crypt 3.0.0; Logarithmic Map (Moved); More Info; Words Found in Voynich Manuscript; An Inventory Of 3D Space-Filling Curves; Foxes Using Magnetic Fields To Hunt; 5 Rounds RC5 No Rotation; JP Morgan and Madoff; Ori - Secure, Distributed File System; Physical Unclonable Functions (PUFs); Prejudice on Reddit; Recursion OK; Optimizing Julia Code; Cash Handouts in Brazil; Couple Nice Music Videos; It Also Works!; Adaptive Plaintext; It Works!

© 2006-2013 Andrew Cooke (site) / post authors (content).

Efficient Collision Detection with Pessimistic Measures

From: "andrew cooke" <andrew@...>

Date: Sat, 15 Sep 2007 16:16:32 -0400 (CLT)

I'm modelling a set of colliding lines (rods in 2D) and using Napito to
plot their trajectories.

Modelling individual lines is easy; the problem is reliably detecting
collisions.  In particular, I need to find the *first* collision amongst
all lines (since the movements change after a collision I am simply
restarting after that point - a future optimisation might do something
more sophisticated).

So this is some kind of search.  The trouble is that I don't have an
analytic solution for collisions.  Instead I have a fairly efficient but
pessimistic (it may give false positives) method for determining whether
any two lines touch within a given interval and an iterative method for
determining the time of intersection within some interval that is only
reliable in the limit of small intervals.

Finding the first possible pair of lines ("candidates") is easy - just use
the pessimistic method over progressively smaller time intervals.  But the
"limit of small intervals" makes everything uncertain and possibly
expensive - if you narrow down on an interval to search, and then find
that that it was unsuccessful (which is possible, since the initial
process is pessimistic), then what do you do?  It seems that you are
forced into a fairly detailed systematic search over time (and of
necessarily small intervals).

Fortunately, I can implement the candidate test in a way that makes it
progressively less pessimistic as the time interval decreases (it's
asymptotically correct).  So an explicit search is not that expensive. 
What becomes an issue then is the efficient broadening of the search to
include other candidates if the initial "best" fails.

This suggests that the best approach is to use a depth first search in
time (consider the tree that successively divides intervals in half),
discarding lines when they are not part of the overlapping group as you
descend, pruning when there are no candidates, and using the iterative
method as a test only at the very bottom "leaf" intervals.

In retrospect that seems obvious, but it's taken me a heck of a time to
see it clearly.  I keep being tempted to use the iterative method sooner
(when it works it converges rapidly, but when it fails I am left with no
way to fold that knowledge back into the search).

I guess there may be a future optimisation which uses the iterative
approach in some kind of speculative manner.  Perhaps when I am more
confident about its properties (it's just an analytic solution to a linear
approximation).

Andrew

Subtle, but Correct (I Hope)

From: "andrew cooke" <andrew@...>

Date: Sat, 15 Sep 2007 17:27:17 -0400 (CLT)

I forgot to mention an additional concern.  It's not really a concern,
since I think the previous argument is correct, but it was one reason I
took so long to get this clear.

Since the initial restriction is pessimistic you may, for any finite
interval, be "blocked" from finding a correct pair of colliding the lines
by the presence of one or more "confusing" lines, which are incorrectly
included.

This is resolved by searching all time ranges in progressively smaller
intervals and relying on the asymptotically correct behaviour to
eventually weed out the confusion.

What I had been trying to do, without much success, was remove the
confusion by pushing information back "up" the search tree.

Andrew

Comment on this post