| Andrew Cooke | Contents | Latest | RSS | Twitter | Previous | Next

C[omp]ute

Welcome to my blog, which was once a mailing list of the same name and is still generated by mail. Please reply via the "comment" links.

Always interested in offers/projects/new ideas. Eclectic experience in fields like: numerical computing; Python web; Java enterprise; functional languages; GPGPU; SQL databases; etc. Based in Santiago, Chile; telecommute worldwide. CV; email.

Personal Projects

Lepl parser for Python.

Colorless Green.

Photography around Santiago.

SVG experiment.

Professional Portfolio

Calibration of seismometers.

Data access via web services.

Cache rewrite.

Extending OpenSSH.

C-ORM: docs, API.

Last 100 entries

Payroll Service Quotes for Cat Soft LLC; (Beating Dead Horse) StackOverflow; Current State of Justice in China; Now Is Cat Soft LLC's Chance To Save Up To 32% On Mail; Axiom of Determinacy; Ewww; Fee Chaos Book; Course on Differential Geometry; Increase Efficiency with GPS Vehicle Tracking for Cat Soft LLC; Okay, but...; Sparse Matrices, Deep Learning; Sounds Bad; Applebaum Rape; Tomato Chutney v4; Have to add...; Culturally Liberal and Nothing More; Weird Finite / Infinite Result; Your diamond is a beaten up mess; Maths Books; Good Bike Route from Providencia / Las Condes to Panul\; Iain Pears (Author of Complex Plots); Plum Jam; Excellent; More Recently; For a moment I forgot StackOverflow sucked; A Few Weeks On...; Chilean Book Recommendations; How To Write Shared Libraries; Jenny Erpenbeck (Author); Dijkstra, Coins, Tables; Python libraries error on OpenSuse; Deserving Trump; And Smugness; McCloskey Economics Trilogy; cmocka - Mocks for C; Concept Creep (Americans); Futhark - OpenCL Language; Moved / Gone; Fan and USB issues; Burgers in Santiago; The Origin of Icosahedral Symmetry in Viruses; autoenum on PyPI; Jars Explains; Tomato Chutney v3; REST; US Elections and Gender: 24 Point Swing; PPPoE on OpenSuse Leap 42.1; SuperMicro X10SDV-TLN4F/F with Opensuse Leap 42.1; Big Data AI Could Be Very Bad Indeed....; Cornering; Postcapitalism (Paul Mason); Black Science Fiction; Git is not a CDN; Mining of Massive Data Sets; Rachel Kaadzi Ghansah; How great republics meet their end; Raspberry, Strawberry and Banana Jam; Interesting Dead Areas of Math; Later Taste; For Sale; Death By Bean; It's Good!; Tomato Chutney v2; Time ATAC MX 2 Pedals - First Impressions; Online Chilean Crafts; Intellectual Variety; Taste + Texture; Time Invariance and Gauge Symmetry; Jodorowsky; Tomato Chutney; Analysis of Support for Trump; Indian SF; TP-Link TL-WR841N DNS TCP Bug; TP-Link TL-WR841N as Wireless Bridge; Sending Email On Time; Maybe run a command; Sterile Neutrinos; Strawberry and Banana Jam; The Best Of All Possible Worlds; Kenzaburo Oe: The Changeling; Peach Jam; Taste Test; Strawberry and Raspberry Jam; flac to mp3 on OpenSuse 42.1; Also, Sebald; Kenzaburo Oe Interview; Otake (Kitani Minoru) move Black 121; Is free speech in British universities under threat?; I am actually good at computers; Was This Mansplaining?; WebFaction / LetsEncrypt / General Disappointment; Sensible Philosophy of Science; George Ellis; Misplaced Intuition and Online Communities; More Reading About Japan; Visibilty / Public Comments / Domestic Violence; Ferias de Santiago; More (Clearly Deliberate); Deleted Obit Post; And then a 50 yo male posts this...; We Have Both Kinds Of Contributors

© 2006-2015 Andrew Cooke (site) / post authors (content).

Efficient Collision Detection with Pessimistic Measures

From: "andrew cooke" <andrew@...>

Date: Sat, 15 Sep 2007 16:16:32 -0400 (CLT)

I'm modelling a set of colliding lines (rods in 2D) and using Napito to
plot their trajectories.

Modelling individual lines is easy; the problem is reliably detecting
collisions.  In particular, I need to find the *first* collision amongst
all lines (since the movements change after a collision I am simply
restarting after that point - a future optimisation might do something
more sophisticated).

So this is some kind of search.  The trouble is that I don't have an
analytic solution for collisions.  Instead I have a fairly efficient but
pessimistic (it may give false positives) method for determining whether
any two lines touch within a given interval and an iterative method for
determining the time of intersection within some interval that is only
reliable in the limit of small intervals.

Finding the first possible pair of lines ("candidates") is easy - just use
the pessimistic method over progressively smaller time intervals.  But the
"limit of small intervals" makes everything uncertain and possibly
expensive - if you narrow down on an interval to search, and then find
that that it was unsuccessful (which is possible, since the initial
process is pessimistic), then what do you do?  It seems that you are
forced into a fairly detailed systematic search over time (and of
necessarily small intervals).

Fortunately, I can implement the candidate test in a way that makes it
progressively less pessimistic as the time interval decreases (it's
asymptotically correct).  So an explicit search is not that expensive. 
What becomes an issue then is the efficient broadening of the search to
include other candidates if the initial "best" fails.

This suggests that the best approach is to use a depth first search in
time (consider the tree that successively divides intervals in half),
discarding lines when they are not part of the overlapping group as you
descend, pruning when there are no candidates, and using the iterative
method as a test only at the very bottom "leaf" intervals.

In retrospect that seems obvious, but it's taken me a heck of a time to
see it clearly.  I keep being tempted to use the iterative method sooner
(when it works it converges rapidly, but when it fails I am left with no
way to fold that knowledge back into the search).

I guess there may be a future optimisation which uses the iterative
approach in some kind of speculative manner.  Perhaps when I am more
confident about its properties (it's just an analytic solution to a linear
approximation).

Andrew

Subtle, but Correct (I Hope)

From: "andrew cooke" <andrew@...>

Date: Sat, 15 Sep 2007 17:27:17 -0400 (CLT)

I forgot to mention an additional concern.  It's not really a concern,
since I think the previous argument is correct, but it was one reason I
took so long to get this clear.

Since the initial restriction is pessimistic you may, for any finite
interval, be "blocked" from finding a correct pair of colliding the lines
by the presence of one or more "confusing" lines, which are incorrectly
included.

This is resolved by searching all time ranges in progressively smaller
intervals and relying on the asymptotically correct behaviour to
eventually weed out the confusion.

What I had been trying to do, without much success, was remove the
confusion by pushing information back "up" the search tree.

Andrew

Comment on this post