| Andrew Cooke | Contents | Latest | RSS | Twitter | Previous | Next

C[omp]ute

Welcome to my blog, which was once a mailing list of the same name and is still generated by mail. Please reply via the "comment" links.

Always interested in offers/projects/new ideas. Eclectic experience in fields like: numerical computing; Python web; Java enterprise; functional languages; GPGPU; SQL databases; etc. Based in Santiago, Chile; telecommute worldwide. CV; email.

Personal Projects

Lepl parser for Python.

Colorless Green.

Photography around Santiago.

SVG experiment.

Professional Portfolio

Calibration of seismometers.

Data access via web services.

Cache rewrite.

Extending OpenSSH.

C-ORM: docs, API.

Last 100 entries

Why Are There Still So Many Jobs?; Navier Stokes Incomplete; More on Benford; FBI Claimed Vandalism; Architectural Tessellation; Also: Go, Blake's 7; Delusions of Gender (book); Crypto AG DID work with NSA / GCHQ; UNUMS (Universal Number Format); MOOCs (Massive Open Online Courses); Interesting Looking Game; Euler's Theorem for Polynomials; Weeks 3-6; Reddit Comment; Differential Cryptanalysis For Dummies; Japanese Graphic Design; Books To Be Re-Read; And Today I Learned Bugs Need Clear Examples; Factoring a 67 bit prime in your head; Islamic Geometric Art; Useful Julia Backtraces from Tasks; Nothing, however, is lost with less discomfort than that which, when lost, cannot be missed; Article on Didion; Cost of Living by City; British Slavery; Derrida on Metaphor; African SciFi; Traits in Julia; Alternative Japanese Lit; Pulic Key as Address (Snow); Why Information Grows; The Blindness Of The Chilean Elite; Some Victoriagate Links; This Is Why I Left StackOverflow; New TLS Implementation; Maths for Physicists; How I Am 8; 1000 Word Philosophy; Cyberpunk Reading List; Detailed Discussion of Message Dispatch in ParserCombinator Library for Julia; FizzBuzz in Julia w Dependent Types; kokko - Design Shop in Osaka; Summary of Greece, Currently; LLVM and GPUs; See Also; Schoolgirl Groyps (Maths); Japanese Lit; Another Example - Modular Arithmetic; Music from United; Python 2 and 3 compatible alternative.; Read Agatha Christie for the Plot; A Constructive Look at TempleOS; Music Thread w Many Recommendations; Fixed Version; A Useful Julia Macro To Define Equality And Hash; k3b cdrom access, OpenSuse 13.1; Week 2; From outside, the UK looks less than stellar; Huge Fonts in VirtualBox; Keen - Complex Emergencies; The Fallen of World War II; Some Spanish Fiction; Calling C From Fortran 95; Bjork DJ Set; Z3 Example With Python; Week 1; Useful Guide To Starting With IJulia; UK Election + Media; Review: Reinventing Organizations; Inline Assembly With Julia / LLVM; Against the definition of types; Dumb Crypto Paper; The Search For Quasi-Periodicity...; Is There An Alternative To Processing?; CARDIAC (CARDboard Illustrative Aid to Computation); The Bolivian Case Against Chile At The Hague; Clear, Cogent Economic Arguments For Immigration; A Program To Say If I Am Working; Decent Cards For Ill People; New Photo; Luksic And Barrick Gold; President Bachelet's Speech; Baltimore Primer; libxml2 Parsing Stream; configure.ac Recipe For Library Path; The Davalos Affair For Idiots; Not The Onion: Google Fireside Chat w Kissinger; Bicycle Wheels, Inertia, and Energy; Another Tax Fraud; Google's Borg; A Verion That Redirects To Local HTTP Server; Spanish Accents For Idiots; Aluminium Cans; Advice on Spray Painting; Female View of Online Chat From a Male; UX Reading List; S4 Subgroups - Geometric Interpretation; Fucking Email; The SQM Affair For Idiots; Using Kolmogorov Complexity; Oblique Strategies in bash

© 2006-2015 Andrew Cooke (site) / post authors (content).

Solving Grid Puzzle in Python

From: andrew cooke <andrew@...>

Date: Thu, 30 Aug 2012 06:22:42 -0400

A neat little puzzle I spent some rainy holiday time on is described at 
http://stackoverflow.com/questions/12177600

[This post has been updated since first posting]

The code below is my final attempt, which solves the puzzle in under 3
secs.  I'm posting it here rather than updating the SO post as it's
more complex and not going to help people trying to understand the
basic idea.

One new feature here is that I restrict the search over all solutions
to a single symmetry (so there are four times as many solutions as
found, which can be generated by flipping the solution vertically,
horizontally, or both).  Finding the best way to enforce this was the
hardest part of the entire problem - I finally hit upon requiring the
largest value to be at a certain corner.

Andrew


#!/usr/bin/python3

nx, ny = 4, 5
values = [1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,35,36,40]
# grid[x][y] so it is a list of columns (prints misleadingly!)
grid = [[0 for _ in range(ny)] for _ in range(nx)]
# cache these to avoid re-calculating
xy_moves = {}
debug = False

def edges(grid, x, y):
    'coordinates of vertical/horizontal neighbours'
    return [(x-1,y),(x+1,y),(x,y-1),(x,y+1)]

def corners(grid, x, y):
    'coordinates of vertical/horizontal neighbours'
    return [(x-1,y-1),(x+1,y-1),(x-1,y+1),(x+1,y+1)]

def inside(coords):
    'filter coordinates inside the grid'
    return ((x, y) for (x, y) in coords 
            if x > -1 and x < nx and y > -1 and y < ny)

def filled(grid, coords):
    'filter coords to give only filled cells'
    return filter(lambda xy: grid[xy[0]][xy[1]], coords)

def count_neighbours(grid, x, y):
    '''use this to find most-constrained location
    including corners makes the global search with symmetry removal slightly
    slower (2m40s v 2m20s), but the (2,2)=10 search faster (2s v 6s),
    presumably because edges alone hits the symmetry test sooner.'''
#    return sum(1 for _ in filled(grid, inside(edges(grid, x, y))))
    return sum(1 for _ in filled(grid, inside(edges(grid, x, y)))) + \
        sum(0.5 for _ in filled(grid, inside(corners(grid, x, y))))

def cluster(grid, depth):
    '''given a certain depth in the search, where should we move next?  
       choose a place with lots of neighbours so that we have good 
       constraints (and so can reject bad moves)'''
    if depth not in xy_moves:
        best, x, y = 0, 0, 0 # default matches symmetry check
        for xx in range(nx):
            for yy in range(ny):
                if not grid[xx][yy]:
                    count = count_neighbours(grid, xx, yy)
                    if count > best:
                        best, x, y = count, xx, yy
        xy_moves[depth] = (x, y)
        if debug: print('next move for %d is %d,%d' % (depth, x, y))
    return xy_moves[depth]

def to_corners(grid, depth):
    '''alternative move sequence, targetting corners first.
    much slower - 110m for all values.'''
    if depth not in xy_moves:
        if depth >= 2*(nx+ny) - 4:
            cluster(grid, depth)
        else:
            d = depth
            if d < nx: xy_moves[depth] = (d, 0)
            else:
                d -= nx
                if d+1 < ny: xy_moves[depth] = (0, 1+d)
                else:
                    d -= ny-1
                    if d+1 < nx: xy_moves[depth] = (1+d, ny-1)
                    else:
                        d -= nx-1
                        xy_moves[depth] = (nx-1, d+1)
            if debug: 
                print('next move for %d is %s' % (depth, xy_moves[depth])) 
    return xy_moves[depth]

def drop_value(value, values):
    'remove value from the values'
    return [v for v in values if v != value]

def copy_grid(grid, x, y, value):
    'copy grid, replacing the value at x,y'
    return [[value if j == y else grid[i][j] for j in range(ny)]
            if x == i else grid[i]
            for i in range(nx)]

def move_ok(grid, x, y, value):
    'are all neighbours multiples?'
    for (xx, yy) in filled(grid, inside(edges(grid, x, y))):
        g = grid[xx][yy]
        if (g > value and g % value) or (g < value and value % g):
            if debug: 
                print('fail: %d at %d,%d in %s' % (value, x, y, grid))
            return False
    return True

def always_ok(grid):
    'dummy test to allow all solutions'
    return True

def check_corners(grid):
    '''remove symmetrically-identical solutions by requiring the largest
    corner to be top right (took a long time to think of this constraint)'''
    return grid[0][0] >= max(grid[0][ny-1], grid[nx-1][0], grid[nx-1][ny-1])

def search(grid, values, next_xy=cluster, symmetry_ok=always_ok, depth=0):
    'search over all values, backtracking on failure'
    if symmetry_ok(grid):
        if values:
            (x, y) = next_xy(grid, depth)
            for value in values:
                if move_ok(grid, x, y, value):
                    if debug: print('add %d to %d,%d' % (value, x, y))
                    for result in search(copy_grid(grid, x, y, value),
                                         drop_value(value, values), 
                                         next_xy, symmetry_ok, depth+1):
                        yield result
        else:
            yield grid


# run the search, knowing that (2,2) (which is (1,1) for zero-indexing)
# has the value 10.
for result in search(copy_grid(grid, 1, 1, 10), drop_value(10, values)):
    print(result)

# how many solutions in total?
xy_moves = {} # reset cache
for (n, solution) in enumerate(search(grid, values, next_xy=to_corners,
for (n, solution) in enumerate(search(grid, values, next_xy=cluster,
                                      symmetry_ok=check_corners)):
    print('%d: %s' % (n, solution))

Comment on this post